TTI: 9-1002

MASH TEST 3-11 ON THE TEXAS T101 BRIDGE RAIL

Research/Test Report 9-1002-1

Cooperative Research Program

TEXAS TRANSPORTATION INSTITUTE THE TEXAS A&M UNIVERSITY SYSTEM COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/document/9-1002-1.pdf

		Technical Report Documentation Page
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FHWA/TX-11/9-1002-1		
4. Title and Subtitle		5. Report Date
MASH TEST 3-11 ON THE TEXAS	S T101 BRIDGE RAIL	November 2010
		Published: March 2011
		6. Performing Organization Code
7. Author(s)	8. Performing Organization Report No.	
Roger P. Bligh and Wanda L. Menges		Report 9-1002-1
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
Texas Transportation Institute Provi	ng Ground	
The Texas A&M University System	l	11. Contract or Grant No.
College Station, Texas 77843-3135		Project 9-1002
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Texas Department of Transportation	Test Report:	
Research and Technology Implementation Office		September 2009–August 2010
P.O. Box 5080		14. Sponsoring Agency Code
Austin, Texas 78763-5080		
15. Supplementary Notes		
Project performed in cooperation with the Texas Department of Transportation and the Federal Highway		
Administration.		
Project Title: Roadside Safety Device Crash Testing Program		
URL: http://tti.tamu.edu/document/9-1002-1.pdf		
16. Abstract		

The Texas T101 bridge rail is widely used in the state of Texas. Previous testing demonstrated its ability to contain and redirect passenger cars and a 20,000-lb school bus. Based on this testing, the Federal Highway Administration accepted the T101 bridge rail as an NCHRP Report 350 TL-3 barrier. However, its impact performance with pickup trucks was never evaluated.

Under research project 0-5526, Impact Performance of roadside Safety Appurtenances, researchers conducted a performance assessment of Texas roadside safety devices to help evaluate the impact of adopting the new *MASH* guidelines on current hardware. Testing and evaluation of the T101 bridge rail was recommended as a high priority. This recommendation was based primarily on the absence of pickup truck testing on the system, and concerns that the 27-inch rail height may not be compatible with pickup trucks and SUVs under design impact conditions.

The T101 bridge rail did not meet MASH evaluation criteria for test 3-11. The vehicle overturned after losing contact with the barrier. If continued use of the T101 bridge rail is desired, it is recommended that an in-service performance evaluation be conducted. Alternatively, a new barrier system that satisfies the same key design criteria as the T101 bridge rail can be developed and tested under future research.

17. Key Words		18. Distribution Statement		
Roadside Safety, Bridge Rail, Crash Test, MASH		No restrictions. This document is available to the		
		public through NTIS:		
		National Technic	al Information Ser	vice
		Springfield, Virg	inia 22161	
		http://www.ntis.g	OV	
19. Security Classif.(of this report)	20. Security Classif.(of this page)		21. No. of Pages	22. Price
Unclassified	Unclassified		88	

MASH TEST 3-11 ON THE T101 BRIDGE RAIL

by

Roger P. Bligh, P.E. Research Engineer Texas Transportation Institute

and

Wanda L. Menges Associate Research Specialist Texas Transportation Institute

Report 9-1002-1 Project 9-1002 Project Title: Roadside Safety Device Crash Testing Program

> Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

> > November 2010 Published: March 2011

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation, and its contents are not intended for construction, bidding, or permit purposes. In addition, the above listed agencies assume no liability for its contents or use thereof. The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. The engineer in charge of the project was Roger P. Bligh, P.E. (Texas, #78550).

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article being tested.

Wanda L. Menges, Research Specialist Deputy Quality Manager

Richard A. Zimmer, Senior Research Specialist Test Facility Manager Quality Manager Technical Manager

ACKNOWLEDGMENTS

This research project was conducted under a cooperative program between the Texas Transportation Institute, the Texas Department of Transportation, and the Federal Highway Administration. The TxDOT project director for this research was Rory Meza, P.E., with the Design Division. John Holt, P.E., and Jon Reis with the Bridge Division served as project advisors and were also actively involved in this research. The TxDOT research engineer was Wade Odell, P.E., with the Research and Technologh Implementation Office. The authors acknowledge and appreciate their guidance and assistance.

TABLE OF CONTENTS

LIST OF FIGURESi	ix
LIST OF TABLES	x
CHAPTER 1. INTRODUCTION1.1INTRODUCTION1.2BACKGROUND1.3OBJECTIVES/SCOPE OF RESEARCH	1 1 1 4
CHAPTER 2. SYSTEM DETAILS2.1TEST ARTICLE2.2MATERIAL SPECIFICATIONS	5 5 5
CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA.3.1CRASH TEST MATRIX.3.2EVALUATION CRITERIA.	9 9 9
CHAPTER 4. CRASH TEST PROCEDURES14.1TEST FACILITY14.2VEHICLE TOW AND GUIDANCE PROCEDURES14.3DATA ACQUISITION SYSTEMS14.3.1Vehicle Instrumentation and Data Processing14.3.2Anthropomorphic Dummy Instrumentation14.3.3Photographic Instrumentation and Data Processing1	1 1 1 1 2 2
CHAPTER 5. CRASH TEST RESULTS15.1TEST DESIGNATION AND ACTUAL TEST CONDITIONS15.2TEST VEHICLE15.3WEATHER CONDITIONS15.4TEST DESCRIPTION15.4.1Damage to Test Installation15.4.2Vehicle Damage15.4.3Occupant Risk Factors1	.3 .3 .3 .3 .3 .3 .3 .6 .6
CHAPTER 6. SUMMARY AND CONCLUSIONS26.1ASSESSMENT OF TEST RESULTS26.1.1Structural Adequacy26.1.2Occupant Risk26.1.3Vehicle Trajectory26.2CONCLUSIONS2	23 23 23 23 23 24 24
CHAPTER 7. IMPLEMENTATION STATEMENT	27

TABLE OF CONTENTS (CONTINUED)

REFERENCES	. 29
APPENDIX A. DETAILS OF THE TXDOT T101 BRIDGE RAIL	. 31
APPENDIX B. MATERIAL CERTIFICATION DOCUMENTS	. 43
APPENDIX C. TEST VEHICLE PROPERTIES AND INFORMATION	. 63
APPENDIX D. SEQUENTIAL PHOTOGRAPHS	. 67
APPENDIX E. VEHICLE ANGULAR DISPLACEMENTS AND ACCELERATIONS	. 71

LIST OF FIGURES

Figure

Figure 1.1.	Cross Section of T101 Bridge Rail.	3
Figure 2.1.	Details of the T101 Bridge Rail.	6
Figure 2.2.	Cross Section of the T101 Bridge Rail.	7
Figure 2.3.	T101 Bridge Rail before Test No. 420020-1a.	8
Figure 5.1.	Vehicle/Installation Geometrics for Test No. 420020-1a.	. 14
Figure 5.2.	Vehicle before Test No. 420020-1a.	. 15
Figure 5.3.	After Impact Vehicle Position after Test No. 420020-1a.	. 17
Figure 5.4.	Installation after Test No. 420020-1a.	. 18
Figure 5.5.	Vehicle after Test No. 420020-1a.	. 19
Figure 5.6.	Interior of Vehicle for Test No. 420020-1a.	. 20
Figure 5.7.	Summary of Results for MASH Test 3-11 on the T101 Bridge Rail.	. 21
Figure C1.	Vehicle Properties for Test No. 420020-1a.	. 63
Figure D1.	Sequential Photographs for Test No. 420020-1a (Overhead and Frontal Views)	. 67
Figure D2.	Sequential Photographs for Test No. 420020-1a (Rear View).	. 69
Figure E1.	Vehicle Angular Displacements for Test No. 420020-1a.	. 71
Figure E2.	Vehicle Longitudinal Accelerometer Trace for Test No. 420020-1a	
C	(Accelerometer Located at Center of Gravity).	. 72
Figure E3.	Vehicle Lateral Accelerometer Trace for Test No. 420020-1a	
U	(Accelerometer Located at Center of Gravity).	. 73
Figure E4.	Vehicle Vertical Accelerometer Trace for Test No. 420020-1a	
0	(Accelerometer Located at Center of Gravity).	. 74
Figure E5.	Vehicle Longitudinal Accelerometer Trace for Test No. 420020-1a	
8	(Accelerometer Located over Rear Axle).	. 75
Figure E6.	Vehicle Lateral Accelerometer Trace for Test No. 420020-1a	
8	(Accelerometer Located over Rear Axle).	. 76
Figure E7.	Vehicle Vertical Accelerometer Trace for Test No. 420020-1a	
8	(Accelerometer Located over Rear Axle)	. 77

LIST OF TABLES

Table

Table 1.1.Summary of TxDOT Bridge Rails.2Table 6.1.Performance Evaluation Summary for NCHRP Report 350 Test 3-11
on the T101 Bridge Rail.25Table C1.Vehicle Center-of-Gravity Measurements for Test No. 420020-1a.64Table C2.Exterior Crush Measurements for Test No. 420020-1a.65Table C3.Occupant Compartment Measurements for Test No. 420020-1a.66

Page

CHAPTER 1. INTRODUCTION

1.1 INTRODUCTION

This project was set up to provide the Texas Department of Transportation (TxDOT) with a mechanism to quickly and effectively evaluate high priority issues related to roadside safety devices. Roadside safety devices shield motorists from roadside hazards such as non-traversable terrain and fixed objects. To maintain the desired level of safety for the motoring public, these safety devices must be designed to accommodate a variety of site conditions, placement locations, and a changing vehicle fleet. Periodically, there is a need to assess the compliance of existing safety devices with current vehicle testing criteria.

Under this project, roadside safety issues are identified and prioritized for investigation. Each roadside safety issue is addressed with a separate work plan, and the results are summarized in an individual test report.

1.2 BACKGROUND*

Bridge rails are longitudinal barriers designed to keep vehicles from encroaching off bridge structures and encountering underlying hazards. Bridge rails are typically rigid in nature due to the lack of space on bridge structures to accommodate barrier deflection. Common types of bridge rails include continuous concrete barriers, metal rails mounted on concrete parapets, and both concrete and metal beam and post systems.

TxDOT standards include various bridge rails that have been successfully tested or otherwise judged to meet the impact performance requirements of National Cooperative Highway Research Program (NCHRP) *Report 350* (1). These crashworthy rail systems meet *NCHRP Report 350* test levels ranging from TL-2 to TL-5. This variety of rail types provides the bridge design engineer the flexibility to select a railing for a specific bridge site that is safe, cost-effective, and aesthetic.

In order to meet impact performance requirements, a bridge rail must have sufficient structural capacity to contain and redirect a vehicle under prescribed impact conditions. Other issues that need to be addressed in addition to strength are vehicle stability and occupant compartment deformation. Adequate barrier height is required to prevent impacting vehicles from becoming unstable and rolling over. Poor rail geometrics can lead to severe vehicle-barrier snagging and result in excessive deformation of the occupant compartment.

Table 1.1 presents a summary of bridge rails currently in TxDOT standards. It can be seen that all but two bridge rails have a height of 32 inches or greater. The T101 and T6 bridge rails have a height of 27 inches. Crash testing indicates that 27 inches is at or near the minimum height required to contain and redirect the 3/4-ton, standard cab pickup under *NCHRP Report*

^{*} The opinions/interpretations expressed in this section are outside the scope of TTI Proving Ground's A2LA accreditation.

350 test 3-11 impact conditions (2,3). The T6 tubular W-beam rail failed to meet TL-3 performance requirements due to rollover of the pickup truck in *NCHRP Report 350* test 3-11 (4) and was subsequently approved as a TL-2 barrier for use on lower-speed roadways.

Std Name	Description	Height (inches)
T1F	Steel Post with Elliptical Aluminum Rails on Concrete Curb	33
T1W	Steel Post with Tubular Steel Rails on Concrete Curb	32
T101	Steel Post with W-Beam Backed by Steel Tubes	27
T223	Concrete Beam and Post Parapet with 6 ft Openings	32
T221	Vertical Concrete Parapet	32
T401	Concrete Parapet with Steel Post and Rail	33
T402	Concrete Parapet with Steel Post and Rail	42
T411	Concrete Traffic Rail with Windows (Texas Classic)	32
T551	Concrete Safety Shape Parapet with F-Shape Profile	32
T6	Steel Post with Tubular W-Beam*	27
T66	Concrete Beam and Post Parapet with 5 ft-3 inch Openings	32
T77	Steel Post with Two Elliptical Pipes on Concrete Parapet	33
SSTR	Single Slope Traffic Rail	36
T80HT	Concrete Safety Shape and Steel Heavy Truck Rail	50
T80SS	Concrete Single Slope Heavy Truck Rail	42

Table 1.1. Summary of TxDOT Bridge Rails.

* Accepted as *NCHRP Report 350* Test Level 2 (TL-2) system for use on roadways with speeds less than 45 mph)

Figure 1.1 shows a cross-section of the T101 bridge rail. It is worthwhile noting that in addition to having demonstrated satisfactory impact performance with passenger cars of various sizes, the 27-inch tall T101 bridge rail has also successfully contained and redirected a 20,000-lb school bus impacting at a speed of 55 mph and an angle of 15 degrees (5). However, even though it has been accepted as an *NCHRP Report 350* TL-3 barrier by FHWA, the impact performance of the T101 with the 3/4-ton pickup truck has never been evaluated. Some concern exists that the rail height, aggravated by wheel snagging on the W6×20 posts, could lead to vehicle instability.

A recommended update to *NCHRP Report 350* was developed under NCHRP Project 22-14(02), "Improvement of Procedures for the Safety-Performance Evaluation of Roadside Features." The document was subsequently published by the American Association of State Highway and Transportation Officials (AASHTO) as the *Manual for Assessing Safety Hardware* (*MASH*) (6). *MASH* contains revised criteria for safety-performance evaluation of virtually all roadside safety features. Changes incorporated into the new manual include new design test vehicles, revised test matrices, and revised impact conditions.

Under research project 0-5526 (7), researchers conducted a performance assessment of Texas roadside safety devices to help evaluate the impact of adopting the new *MASH* guidelines on current hardware. Crash test results, engineering analyses, and engineering judgment were used to assist with the hardware evaluation.

Figure 1.1. Cross Section of T101 Bridge Rail.

Results of the performance assessment were used to develop a prioritization scheme for further testing and evaluation deemed necessary to bring Texas roadside safety features into compliance with the new impact performance guidelines. Each device was assigned a priority rating of "High," "Medium," or "Low." The prioritization was based on the degree of testing to *MASH* (if any), the performance assessment, usage and/or perceived importance of the device to TxDOT operations, and other applicable factors.

Generally speaking, devices with higher risk of failure under the new guidelines were given higher priority in programming further crash testing and performance evaluation. Should the device ultimately fail to comply with *MASH* requirements, additional time and resources would be required to modify or upgrade the device to permit its continued use after adoption of *MASH*. Conversely, devices with low risk of failure (i.e., very high probability of complying with the update) are generally assigned a lower priority for further investigation. In these cases it is likely that the additional testing will merely confirm compliance of the device with the update, and not as much benefit will be derived from the expended resources.

The only device assigned a high priority for further testing and evaluation under *MASH* guidelines was the T101 bridge rail. This recommendation was based primarily on the absence of pickup truck testing on this system.

1.3 OBJECTIVES/SCOPE OF RESEARCH

The objective of this test was to evaluate the performance of the T101 bridge rail according to the *MASH* standards for Test Level 3 (TL-3) longitudinal barriers. The test performed was *MASH* test 3-11 involving a 2270P (5000 lb) vehicle impacting the critical impact point (CIP) of the length of need (LON) of the barrier at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This is a strength test to verify a barrier's performance for impacts involving light trucks and SUVs for all test levels. Reported herein are details of the T101 bridge rail, test conditions, description of the test performed, assessment of test results, and implementation recommendations.

CHAPTER 2. SYSTEM DETAILS

2.1 TEST ARTICLE

The Texas T101 bridge rail consists of a 12 gauge, AASHTO M180 corrugated W-beam rail strengthened by two TS 4-inch \times 3-inch \times 3/16-inch A500 Grade C steel tubes. The tubes are placed behind the W-beam rail inside the upper and lower peaks. They are connected using 2-1/2-inch \times 3-1/2-inch \times 3/8-inch A500 Grade C steel splice tubes that are 24 inches in length. The W-beam and tubular steel rail elements are mounted to W6 \times 20 steel posts spaced on 8 ft-4 inch centers using 5/8-inch diameter A307 hex head bolts. The bolt attaching the W-beam to the post runs through a 1-1/4-inch schedule 40 pipe sleeve. The height to the top of the W-beam rail is 27 inches.

The W6×20 posts are welded to 9 inch × 10 inch × 7/8-inch thick base plates that are anchored to the concrete bridge deck using four 3/4-inch diameter × 11 inches long A325 hex head through bolts. The deck cantilever to which the rail was attached was 30 inches wide and 8 inches thick and had a minimum specified concrete compressive strength of 3600 psi. The transverse reinforcement in the deck consisted of #5 bars at 6 inches in the top layer and #5 bars at 18 inches in the bottom layer. The longitudinal reinforcement was comprised of #4 bars at 9 inches in the top layer of steel and #5 bars at 12 inch spacing in the bottom layer. All reinforcement steel was Grade 60. A special bolt anchorage plate assembly fabricated from 1/4-inch A36 steel strap was embedded in the deck at each post location in the top layer of reinforcement. The transverse straps of the anchorage plate assembly were 39 inches long and incorporated semi-circular notches at 6-inch spacing.

The total length of the T101 bridge rail was 75 ft. Each end was terminated with a 12 ft-6 inch long ET-PLUS guardrail end treatment assembly, making the overall length of the test installation 100 ft. Details of the T101 bridge rail are shown in Figures 2.1 and 2.2 and Appendix A. Figure 2.3 shows photographs of the completed test installation.

2.2 MATERIAL SPECIFICATIONS

The rail element was 12 gauge AASHTO M180 grade corrugated W-beam backed by $TS4\times3\times3/16$ tubular steel elements of A500 Grade C steel. All reinforcement steel was Grade 60. The specified minimum compressive strength of the concrete for the T101 bridge deck was 3600 psi. On the day of the test, the compressive strength of the bridge deck measured 6344 psi. Appendix B contains mill certification sheets and other certification documents for the materials used in the T101 bridge rail installation, as well as concrete break tests.

Figure 2.1. Details of the T101 Bridge Rail.

9

Figure 2.2. Cross Section of the T101 Bridge Rail.

 \neg

Figure 2.3. T101 Bridge Rail before Test No. 420020-1a.

CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 CRASH TEST MATRIX

According to *MASH*, two tests are recommended to evaluate longitudinal barriers to test level three (TL-3). Details of these tests are described below.

MASH test 3-10: This test involves an 1100C (2425 lb/1100 kg) vehicle impacting the critical impact point (CIP) of the length of need (LON) of the barrier at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. It evaluates a barrier's ability to contain and redirect a small passenger vehicle.

MASH test 3-11: This test involves a 2270P (5000 lb/2270 kg) vehicle impacting the CIP of the LON of the barrier at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This is a strength test intended to evaluate a barrier's performance for impacts involving light trucks and SUVs.

The test reported herein corresponds to *MASH* test 3-11. Target impact point for this test on the T101 bridge rail was post 6.

All crash test, data analysis, and evaluation and reporting procedures followed under this project were in accordance with guidelines presented in *MASH*. Appendix C presents brief descriptions of these procedures.

3.2 EVALUATION CRITERIA

The crash test was evaluated in accordance with the criteria presented in *MASH*. The performance of the T101 bridge rail is judged on the basis of three factors: structural adequacy, occupant risk, and post impact vehicle trajectory. Structural adequacy is judged upon the T101 bridge rail's ability to contain and redirect the vehicle. Occupant risk criteria are used to evaluate the potential risk or hazard to occupants in the impacting vehicle, and to some extent other traffic, pedestrians, or workers in construction zones, if applicable. Post impact vehicle trajectory is used to assess potential for secondary impacts with other vehicles or fixed objects that might create further risk of injury to occupants of the impacting vehicle and/or occupants in other vehicles. The appropriate safety evaluation criteria from table 5-1 of *MASH* were used to evaluate the crash test reported herein. These criteria are listed in further detail under the assessment of the crash test.

CHAPTER 4. CRASH TEST PROCEDURES

4.1 TEST FACILITY

The full-scale crash test reported herein was performed at Texas Transportation Institute (TTI) Proving Ground. TTI Proving Ground is an International Standards Organization (ISO) 17025 accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

The Texas Transportation Institute Proving Ground is a 2000-acre complex of research and training facilities located 10 miles northwest of the main campus of Texas A&M University. The site, formerly an Air Force base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and safety evaluation of roadside safety hardware. The site selected for construction and testing of the T101 bridge rail on pan-formed bridge deck evaluated under this project is along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5 ft by 15 ft blocks nominally 8 to 12 inches deep. The apron is over 50 years old, and the joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE PROCEDURES

The test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A two-to-one speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released to be free-wheeling and unrestrained. The vehicle remained free-wheeling, i.e., no steering or braking inputs, until the vehicle cleared the immediate area of the test site, at which time brakes on the vehicle were activated to bring it to a safe and controlled stop.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

The test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, that measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra small size, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of

the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once recorded, the data are backed up inside the unit by internal batteries should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark as well as initiating the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The raw data are then processed by the Test Risk Assessment Program (TRAP) software to produce detailed reports of the test results. Each of the TDAS Pro units is returned to the factory annually for complete recalibration. Accelerometers and rate transducers are also calibrated annually with traceability to the National Institute for Standards and Technology. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k=2). Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k=2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact.

4.3.2 Anthropomorphic Dummy Instrumentation

Use of a dummy in the 2270P vehicle is optional according to *MASH*, and there was no dummy used in this test.

4.3.3 Photographic Instrumentation and Data Processing

Photographic coverage of the test included three high-speed cameras: one overhead with a field of view perpendicular to the ground and directly over the impact point; one placed behind the installation at an angle; and a third placed to have a field of view parallel to and aligned with the installation at the downstream end. A flashbulb activated by pressure-sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the installation and was visible from each camera. The films from these high-speed cameras were analyzed on a computer-linked motion analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A mini-DV camera and still cameras recorded and documented conditions of the test vehicle and installation before and after the test.

CHAPTER 5. CRASH TEST RESULTS

5.1 TEST DESIGNATION AND ACTUAL TEST CONDITIONS

MASH test 3-11 involves a 2270P vehicle weighing 5000 lb \pm 100 lb impacting the bridge rail at a speed of 62.2 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The target impact point was post 6. The 2005 Dodge Ram 1500 Quad-Cab used in the test weighed 5023 lb and the actual impact speed and angle were 63.0 mi/h and 24.9 degrees, respectively. The actual impact point was at post 6. Impact severity equals 3801 kip-ft, or 3.0 percent above target.

5.2 TEST VEHICLE

A 2003 Dodge Ram 1500 Quad-Cab pickup, shown in Figures 5.1 and 5.2, was used for the crash test. Test inertia weight of the vehicle was 5023 lb, and its gross static weight was 5023 lb. The height to the lower edge of the vehicle bumper was 13.5 inches, and it was 26.0 inches to the upper edge of the bumper. The vertical height to the vehicle center of gravity was 28.0 inches. Figure C1 and Table C1 in Appendix C give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be free-wheeling and unrestrained just prior to impact.

5.3 WEATHER CONDITIONS

The test was performed on the morning of April 23, 2010. At total of 0.5 inches of

rainfall was recorded 4 days prior to the test. Weather conditions at the time of test were as follows: Wind speed: 7 mi/h; Wind direction: 184 degrees with respect to the vehicle (vehicle was traveling in a southwesterly direction); Temperature: 75°F; Relative humidity: 87 percent.

5.4 TEST DESCRIPTION

The 2003 Dodge Ram 1500 Quad-Cab pickup impacted the T101 bridge rail at post 6 at an impact speed of 63.0 mi/h and an impact angle of 24.9 degrees. At 0.029 s after impact, the right front wheel assembly and tire detached from the vehicle, and at 0.042 s, the forward edge of the front passenger door began to peel back. The vehicle began to redirect at 0.071 s, and the rear of the vehicle contacted the bridge rail at 0.176 s. At 0.200 s, the vehicle was traveling parallel with the bridge rail at a speed of 53.7 mi/h. At 0.310 s, the vehicle lost contact with the bridge rail traveling at an impact speed and angle of 51.2 mi/h and 6.0 degrees, respectively. The vehicle subsequently rolled onto the impact (passenger) side and slid to a stop. Brakes on the vehicle were not applied, and the vehicle subsequently came to rest 180 ft downstream of impact and 21 ft toward traffic lanes from the traffic face of the bridge rail. Figures D1 and D2 in Appendix D show sequential photographs of the test period.

Figure 5.1. Vehicle/Installation Geometrics for Test No. 420020-1a.

Figure 5.2. Vehicle before Test No. 420020-1a.

5.4.1 Damage to Test Installation

Figures 5.3 and 5.4 show the damage to the T101 bridge rail. The soil around post 1 was disturbed. Post 6 was leaning toward the field side 10 degrees, the concrete deck was cracked around the post, the front upstream anchor bolt broke, and the lower half of the rail was torn. Post 7 was leaning toward the field side 11 degrees and the concrete deck around the post was cracked. Post 8 was leaning toward the field side 1 degree. Length of contact of the vehicle with the bridge rail was 18 ft. Working width was 2.9 ft. Dynamic deflection of the bridge rail during the test was 2.2 ft, and permanent deformation was 2.0 ft.

5.4.2 Vehicle Damage

Figure 5.5 shows damage to the vehicle. The right front upper and lower ball joint, right front upper and lower A-arms, front sway bar and right frame rail were deformed. Also damaged were the front bumper, right front fender, right front wheel rim and tire, right front door, right rear door, right rear exterior bed, right rear wheel rim, and rear bumper. Maximum exterior crush to the vehicle was 12.0 inches in the side plane at the right front corner at bumper height. Maximum occupant compartment deformation was 1.5 inches in the firewall to front seat area near the toe pan on the right side. Figure 5.6 shows photographs of the interior of the vehicle. Exterior vehicle crush and occupant compartment measurements are shown in Appendix C, Tables C2 and C3.

5.4.3 Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was 14.4 ft/s at 0.118 s, the highest 0.010-s occupant ridedown acceleration was -12.1 Gs from 0.133 to 0.143 s, and the maximum 0.050-s average acceleration was -6.5 Gs between 0.021 and 0.071 s. In the lateral direction, the occupant impact velocity was 20.3 ft/s at 0.118 s, the highest 0.010-s occupant ridedown acceleration was -12.0 Gs from 0.121 to 0.131 s, and the maximum 0.050-s average was -8.9 Gs between 0.044 and 0.094 s. Theoretical Head Impact Velocity (THIV) was 16.2 mi/h or 23.6 ft/s at 0.115 s; Post-Impact Head Decelerations (PHD) was 13.7 Gs between 0.133 and 0.143 s; and Acceleration Severity Index (ASI) was 1.07 between 0.044 and 0.094 s. These data and other pertinent information from the test are summarized in Figure 5.7. Vehicle angular displacements and accelerations versus time traces are presented in Appendix E, Figures E1 through E7.

Figure 5.3. After Impact Vehicle Position after Test No. 420020-1a.

Figure 5.4. Installation after Test No. 420020-1a.

Figure 5.5. Vehicle after Test No. 420020-1a.

Figure 5.6. Interior of Vehicle for Test No. 420020-1a.

Figure 5.7. Summary of Results for MASH Test 3-11 on the T101 Bridge Rail.

CHAPTER 6. SUMMARY AND CONCLUSIONS

6.1 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria is provided below.

6.1.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Result</u>: The T101 bridge rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the bridge rail. Maximum dynamic deflection of the bridge rail during the test was 2.2 ft. (PASS)

6.1.2 Occupant Risk

- D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.
 Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤4.0 inches; windshield ≤3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan ≤9.0 inches; forward of A-pillar ≤12.0 inches; front side door area above seat ≤9.0 inches; front side door below seat ≤12.0 inches;
- Result:No detached elements, fragments, or other debris from the bridge rail were
present to penetrate or to show potential for penetrating the 2270P vehicle,
or to present hazard to others in the area. (PASS)
Maximum occupant compartment deformation was 1.5 inches in the
firewall to passenger seat area near the toe pan on the right side. (PASS)
- *F.* The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
- <u>Result</u>: The vehicle rolled 97 degrees after loss of contact with the bridge rail, and then uprighted itself as it came to rest. (FAIL)

Н. Ос	ccupant impact velocities show	ıld satisfy the following:
]	Longitudinal and Lateral Occu	<u>ipant Impact Velocity</u>
	<u>Preferred</u>	<u>Maximum</u>
	30 ft/s	40 ft/s
<u>Result</u> :	Longitudinal occupant impa occupant impact velocity wa	ct velocity was 14.4 ft/s, and lateral as 20.3 ft/s. (PASS)
I. Occupant ridedown accelerations should satisfy the following: Longitudinal and Lateral Occupant Ridedown Accelerations		
	Preferred	<u>Maximum</u>
	15.0 Gs	20.49 Gs
<u>Result</u> :	Maximum longitudinal rideo maximum lateral ridedown a	down acceleration was -12.1 G, and acceleration was -12.0 G. (PASS)

6.1.3 Vehicle Trajectory

For redirective devices, the vehicle shall exit the barrier within the exit box.

<u>Result</u>: The 2270P vehicle exited within the exit box. (PASS)

6.2 CONCLUSIONS

Impact performance of the T101 bridge rail was unsatisfactory for *MASH* test 3-11, as shown in Table 6.1. The vehicle overturned after losing contact with the barrier, which corresponds to failure of criterion F.
Test Agency: Texas Transportation Institute	Test No.: 420020-1a	Test Date: 2010-04-23
MASH Test 3-11 Evaluation Criteria	Test Results	Assessment
Structural Adequacy		
A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The T101 bridge rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the bridge rail. Maximum dynamic deflection of the bridge rail during the test was 2.2 ft.	Pass
Occupant Risk		
D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached elements, fragments, or other debris from the bridge rail were present to penetrate or to show potential for penetrating the 2270P vehicle, or to present hazard to others in the area.	Pass
Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation was 1.5 inches in the firewall to passenger seat area near the toe pan on the right side.	Pass
<i>F.</i> The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The vehicle rolled 97 degrees after loss of contact with the bridge rail, and then uprighted itself as it came to rest.	Fail
H. Longitudinal and lateral occupant impact velocities should fall below the preferred value of 9.1 m/s (30 ft/s), or at least below the maximum allowable value of 12.2 m/s (40 ft/s).	<i>d</i> Longitudinal occupant impact velocity was 14.4 ft/s, and lateral occupant impact velocity was 20.3 ft/s.	Pass
I. Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at leas below the maximum allowable value of 20.49 Gs.	Maximum longitudinal ridedown acceleration was -12.1 G, and maximum lateral ridedown acceleration was -12.0 G.	Pass
Vehicle Trajectory		
For redirective devices, the vehicle shall exit the barrier within the exit box.	The 2270P vehicle exited within the exit box.	Pass

Table 6.1. Performance Evaluation Summary for NCHRP Report 350 Test 3-11 on the T101 Bridge Rail.

CHAPTER 7. IMPLEMENTATION STATEMENT †

The Texas T101 bridge rail is widely used in the state of Texas. Previous testing demonstrated its ability to contain and redirect passenger cars and a 20,000-lb school bus (5). Based on this testing, FHWA accepted the T101 bridge rail as an *NCHRP Report 350* TL-3 barrier. However, its impact performance with pickup trucks was never evaluated.

Under research project 0-5526 (7), researchers conducted a performance assessment of Texas roadside safety devices to help evaluate the impact of adopting the new MASH(6) guidelines on current hardware. Testing and evaluation of the T101 bridge rail was recommended as a high priority. This was based on concerns that the 27-inch rail height may not be compatible with pickup trucks and SUVs under design impact conditions.

The T101 bridge rail did not meet *MASH* evaluation criteria for test 3-11. The vehicle overturned after losing contact with the barrier.

There currently is no implementation date for adopting *MASH*. If continued use of the T101 bridge rail is desired, it is recommended that an in-service performance evaluation be conducted to assess whether or not its field performance is satisfactory.

Alternatively, a new barrier system that satisfies the same key design criteria as the T101 bridge rail can be developed and tested under future research. Considerations should include efficient hydraulic characteristics, use of existing hardware components, and ability to retrofit existing T101 bridge rail installations as well as rails on older curbed bridge structures.

[†] The opinions/interpretations expressed in this section are outside the scope of TTI Proving Ground's A2LA accreditation.

REFERENCES

- 1. Ross, Jr., H.E., Sicking, D.L., Zimmer, R.A. and Michie, J.D., "Recommended Procedures for the Safety Performance Evaluation of Highway Features," National Cooperative Highway Research Program *Report 350*, Transportation Research Board, National Research Council, Washington, D.C., 1993.
- Buth, C. Eugene, Bligh, Roger P., and Menges, Wanda L., "NCHRP Report 350 Test 3-11 of the Texas Type T6 Bridge Rail," Report No. 1804-4, Texas Transportation Institute, College Station, TX, July 1998.
- 3. Buth, C.E., Williams, W.F., Bligh, R.P., Menges, W.L., and Butler, B.G., "NCHRP Report 350 Testing of the Texas Type T202 Bridge Rail," Report No. 1804-3, Texas Transportation Institute, College Station, TX, December 1998.
- Buth, C.E., Williams, W.F., Bligh, R.P., Menges, W.L., and Haug, R.R., "Performance of the TxDOT T202 (MOD) Bridge Rail Reinforced with Fiber Reinforced Polymer Bars," Report No. 0-4138-3, Texas Transportation Institute, College Station, TX, November 2003.
- 5. Buth, C.E., Arnold, A.G., Campise, W.L., Hirsch, T.J., Ivey. D.L., and Noel, J.S., "Safer Bridge Railings, Volume 3: Appendix C, Part I," Report No. FHWA/RD-82/074.1, Texas Transportation Institute, College Station, TX, May 1983.
- 6. AASHTO, *Manual for Assessing Safety Hardware*, First Edition: American Association of State Highway and Transportation Officials, Washington, D.C., 2009.
- 7. Bligh, R.P. and Menges, W.L., "Initial Assessment of Compliance of Texas Roadside Safety Hardware with Proposed Update to NCHRP Report 350," Report No. 0-5526-1, Texas Transportation Institute, College Station, TX, September 2007.

#	PART NAME	NOTE	QTY.	#	PART NAME	NOTE	QTY.
1	T-101 Post		10	13	W-beam, ET		2
2	TS4x3x3/16 - a	A500 Gr. C	2	14	Anchor Cable		2
3	TS4x3x3/16 - b	A500 Gr. C	2	15	Anchor Bracket, ET Cable		2
4	′TS4x3x3/16 - c	A500 Gr. C	2	16	Strut, CRP		2
5	Tube Splice	A500 Gr. C	4	17	Nut, Recessed Guardrail	5/8"	68
6	Sleeve for Post Bolt	1-1/4" sch. 40	10	18	Bolt, 5/8" x 1-1/4"	Button-head	34
7	W-beam, 25' - 3 space, 12 ga.		3	19	Rebar, transverse top	Gr. 60	153
8	Post, 27in. W6x8.5 SYTP		2	20	Rebar, transverse bottom	Gr. 60	51
9	Post, CRP Bottom-W beam		2	21	Rebar, wall tie	Gr. 60	39
10	CRP top-ET-27"		2	22	Bolt Anchorage Plate	A36	10
11	CRP bent plate washer		2	23	Post Anchor Plate	A36	10
12	ET plus head		2	24	Sleeve for Anchor Bolts	1" EMT	40

RAIL PARTS

		Th	e Tex	as A&M Univ	ersity Systen	ı	
Revi	sions:			Tex	as Transpor	tation Ir	istitute
No.	Date	By	Chk	Co	llege Station	, Texas	77843
1.	2010-02-03	GES	RB	Date	Drawn By	Scale	Sheet No.
2.				2010-01-29	GES	1:500	2 of 12
3.				Project No	b .	Parts	List
4.				420020			
5.				T-101 Brid	lge Rail		

T:\2009-2010\420020TxDOT\T101 Bridge Rail\SolidWorks\Drawings\T-101 Rail

#	PART NAME	NOTE	QTY.
25	Nut, 5/16"		7
26	Bolt, 5/16" -18 x 1-1/2" hex		7
27	Bolt, 5/16" -18 x 2" hex		4
28	Washer, 5/16" flat		8
29	Bolt, 5/8" -11 x 2" hex	A307	4
30	Bolt, 5/8" -11 x 4" hex	A307	10
31	Bolt, 5/8" -11 x 4-1/2" hex	A307	20
32	Washer, 5/8" flat	FWC16a	44
33	Bolt, 3/4" -10 x 11" hex	A325	40
34	Washer, 3/4" flat galv.	2" O.D.	40
35	Washer, 3/4" flat	1-1/2" O.D. hardened	40
36	Nut, 3/4" -10 hex galv.		40
37	Washer, 1" flat	FWC24a	4
38	Nut, 1" -8 hex	FBX24a	4

Revisi	ons:			Texas Transportation Institute						
No.	Date	By	Chk	Co	llege Station	, Texas	77843			
1.				Date	Drawn By	Scale	Sheet No.			
2.				2010-01-29	GES	1:500	3 of 12			
3.				Project No).	Hardw	vare			
4.				420020						
5.				T-101 Brid	lge Rail	ail				

RAIL HARDWARE

T:\2009-2010\420020 TxDOT\T101 Bridge Rail\SolidWorks\Drawings\T-101 Rail

T:\2009-2010\420020 TxDOT\T101 Bridge Rail\SolidWorks\Drawings\T-101 Rail

PT 31 BA	oving Groun 00 SH 47, E Van. TX 778	nd skidg 7091 sor	Ortation te Jniversity on, TX 77843 45-6375	5.7.2	Concrete Bre	Doc. ak 5_7_2 _Brea	No. Revision Date: 2_Concrete ak.doc 2010-02-12		
	Qua	ality Policy	/ Form	Revised by: W Approved by:	. L. Menges C. E. Buth	Re	vision: 4 Page: 1 of 1	e	
Project No. Placement	: <u>4</u> . : <u>Þ</u> a	20020 ECK			Casting Mix Design	g Date: <u></u> P.S.I.:4	010-02-19 1,000		
Truck No.	Ва	tch Ticket	Yards		Printed Technician taking Sign Technician taking Printed Fechnician breaking Sign Fechnician breaking	name of sample: ature of sample: ature of sample: ature of sample:	of le: <u>GLEIN SCHROEDER</u> of le: <u>JL IL</u> of te: <u>EDJE HAUG</u> of le: <u>Jun</u> <u>Haug</u>		
Break Date)	Cylinde	r Age	Truck No.	Total Load (Pounds)	PSI Break	k Aver	rage	
2010-02-2	6	7. DAY	5	1	111,500	3944	20	20	
					111,000 115,000	3926 4067	39		
2010-03-2	25	34 044	<u>'</u> 5		169,500	-	5995		
		· · · · · · · · · · · · · · · · · · ·		· · ·				- - -	

APPENDIX B. MATERIAL CERTIFICATION DOCUMENTS

	Proving Groun 3100 SH 47, E Brvan, TX 776	hd Bidg 7091 807	University on, TX 77643	5.7.2	Concrete Brea	Doc. No. ak 5_7_2_Co _Break.do	Revision Date: 2010-02-12	
	Qua	ality Polic	y Form	Revised by: V Approved by:	V. L. Menges C. E. Buth	Revisio	on: 4 1 of 1	
Project N Placeme	o.: <u>4</u> nt: _ <i>D</i>	20020 ECK			Casting Mix Design) Date: <u>2010</u> P.S.I.: <u>5,</u>	0 - 02 - 22 000	(
Truck No.	Ba	itch Ticket	Yards		Printed r Technician taking s Signa Technician taking s Printed r Technician breaking s Signa Technician breaking s	name of sample: Esp ature of sample: Esp ature of sample: Esp ature of	ie Haus in Ota SIE HAUS	1
Break Da	te	Cylinde	r Age	Truck No.	Total Load (Pounds)	PSI Break	Avera	ige
2010-02	26	4 DAYS		- 1	79,000 77,000	2794 2723		
2010-03	- 25	31 DA	ys.		186,500 192,000	6597 6191	669	3

MATERIAL USED

TEST NUMBER 420020-1A

DATE 2010-04-23

DATE RECEIVED	ITEM NUMBER	DESCRIPTION	SUPPLIER	HEAT #
2010-02-24	Parts 4	T101 parts	GSI	on file
2010-01-27	Rebar 04-13	1/2" x 20' gr 60	CMC-SHEPLERS	3013673
2010-01-27	Rebar 05-10	5/8" x 20' gr 60	CMC-SHEPLERS	3012466
2010-01-22	W-beam 6	12 ga. 3 sp. 25'	Trinity	generic Trinity
2010-04-20	Bolt 0.6250-3	5/8" x 4 1/2" A307	Mack Bolt & Steel	330805027
2010-04-20	Bolt 0.6250-4	5/8" x 4" A307	Mack Bolt & Steel	not given
2010-04-20	Bolt 0.7500-4	3/4-10 x 12" A325 (cut to 11")	Mack Bolt & Steel	09060322
2010-04-20	Nut 0.7500-5	3/4 A563 gr C (A325) heavy hex	Mack Bolt & Steel	07210497-1
2010-04-20	Washer 0.6250-4	5/8" flat zinc	Mack Bolt & Steel	not given
2010-04-20	Washer 0.7500-5	3/4" flat	Mack Bolt & Steel	not given
2010-04-20	Washer 0.7500-6	3/4" F436 flat	Mack Bolt & Steel	1Q058

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN, ZHEJIANG, P.R.CHINA PURCHASER · PORTEOUS FASTENER COMPANY.

PO. NUMBER : 18100107 COMMODITY : HEX MACHINE BOLT GR-A

SIZE 5/8-11X4-1/2 NC

LOT NO B08101050 SHIP QUANTITY . 3,600 PCS

HEADMARKS: CYI & 307A

PERCENTAGE COMPOSITION OF CHEMISTRY :

Chemistry	Al%	C%	Mn%	P%	S%	Si%
Spec. MIN.	0.0200	0.0500	0.3000			
MAX.		0.1000	0.6000	0.0350	0.0350	0.1000
Test Value	0.0540	0.0700	0.4200	0.0100	0.0070	0.0500

MECHANICAL PROPERTIES : ACCORDING TO ASTM A 307A-2007

TEST DATE: 2009/03/14		SAMPLED BY : ZH	AO ZHENZHEN	SAMPLING DATE 20	09/03/11
INSPECTIONS ITEM	SAMPLE	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC. REJ.
CORE HARDNESS	8 PCS	ASTM E18	69-100 HRB	79 HRB	8 0
TENSILE STRENGTH	4 PCS	ASTM F606/F606M	Min. 60 KSI	75 KSI	4 0

ALL TESTS ARE IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM/SAE/ASME/MIL-STD-120 SPECIFICATION. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY.

THIS CERTIFIED MATERIAL TEST REPORT APPLIES TO THE SAMPLES TESTED AND IT CANNOT BE REPRODUCED EXCEPT IN FULL.

SIGNATURE :

Vison

Tel: (0573)84185001(48Lines)

DATE : 2009/04/03

Fax: (0573)84184488 84184567

PACKING NO · GEM081127009

SAMPLING PLAN : ASME B18.18.1

PART NO: 00024-3042-021

HEAT NO: 330805027

MATERIAL : ML08

FINISH : ZINC

INVOICE NO: GEM/PFC-090403 HAY

Porteous Fastener Company

Product Information Sheet

Hex Bolts, Full Body, Inch Series

4

- PFC Product Categories: 00024, & 00026.
- Manufacturers test reports are typically available for this product.
- Typical Material: Low Carbon Steel
- > Material and Mechanical Properties: Purchased to meet ASTM A307 Grade A
- Dimensions: ASME B18.2.1, Full Body, Rolled Threads
 - Standard thread length on bolt lengths up to 9 ¾ inches. 6 inches of threads on lengths 10 inches and longer.
- Zinc Plating: Purchased to meet ASTM F1941 FeZn3A
- > Hot-Dip Galvanized: Purchased to meet ASTM A153.
- Typical Hardness: HRB 69-100
- > Tensile Strength: 60,000 PSI Minimum

		Tensile	Strength			Length Tolerances for Hex Bolts							
Size	PSI	Pounds Size PSI Pounds Nominal Size											
1/4-20	60,000	1900	7/8-9	60,000	27,700	Nominal				1			
5/16-18	60,000	3100	1-8	60,000	36,350	Length	1/4 to 3/8	7/16 & 1/2	9/16 to 3/4	7/8 to 1	1 1/2	Over 1 1/2	
3/8-16	60,000	4650	1 1/8-7	60,000	45,800	Up to & Incl							
7/16-14	60,000	6350	1 1/4-7	60,000	58,150	1"	+0.02/-0.03	+0.02/-0.03	+0.02/-0.03				
1/2-13	60,000	8500	1 3/8-6	60,000	69,300	Over 1" to 2					+0.12/-0.12		
9/16-12	60,000	11,000	1 1/2-6	60,000	84,300	1/2", incl.	+0.02/-0.04	+0.04/-0.06	+0.06/-0.08	+0.08/-0.10		+0.18/-0.18	
5/8-11	60,000	13,550	1 3/4-5	60,000	114,000	Over 2 1/2"							
3/4-10	60,000	20,050	2-4 1/2	60,000	150,000	to 4", Incl.	+0.04/-0.06	+0.06/-0.08	+0.08/-0.10	+0.10/-0.14	+0.16/-0.16	+0.20/-0.20	
						Over 4" to 5", incl.	+0.06/-0.10	+0.08/-0.10	+0.10/-0.10	+0.12/-0.16	+0.18/-0.18	+0.22/+0.22	
						Over 6"	+0.10/-0.18	+0.12/-0.18	+0.14/-0.20	+0.16/0.20	+0.22/-0.22	+0.24/-0.24	

.

Porteous Fastener Company

Page 1 of 1

The information presented is believed to be accurate at the time of document creation. However, Porteous Fastener Company is not responsible for any claim traceable to any errors (typographical or otherwise) as contained herein. Porteous Fastener Company makes no warranties as to the accuracy of this information.

					CERTI	FICATE	OF IN	SPECTION					
Furchaser	PFC							Date:	200	9-8-10			
F O NO	PO 1906	2235						ISO NO:	010	4Q176	60R 1M/33	302	
INV NO:	98017RB	093154	B REVI					Expire:	20-	Sep-10			
Manufacturer	Ningto Z	henhai	Xingy, Fi	asteners	Co., Lt	d.							
Address	Fangzher	n Village	Ningbo	Chemica	al Zone)	Xiepu To	wn,Zhen	hai District,Nir	ngbo City	31520-	4.Zhejiang	Province	,V.R.China
	A325 ST	RUCTU	TRAL BO	LT, TY	TE 1.	W/"A325"	·, `	,	5		, , , ,		,
Commodity	MFG'S I	D.ON	HEAD					CUSTOMER PART NO. 00152-3272-020					
Size	3/4-10 X	12						MANUFACTURING DATE: 2009.7.10					
Lot NO	29B134-1	1						HEAT NO. 09060322					
Ship quantity		0.595		MPCS				MATERIAL.	45#	CARB	ON STEE	L	
Fuush	PLN									,			
DIMENSIONAL I	INSPECTI	ION:		ACCO	RDING	TO ASM	E B18.2.6	5-2003					
TEST DATE:	2009-06-	28	SAMPLI	ED BY:N	AIXOAN	ЧIQИ	TITLE:Q	C MANAGER	SA	MPLIN	IG DATE:	2009-00	5-28
INSPE	ECTION I	TEM		SAMPI	E SIZE	SPEC	IFIED	ACTUA	L RESUL	Т	ACC	EPT	REJECT
						ASI	ME						
API	PEARANC	E		1	UU	B18.2.	6-2003		OK		10	0	0
	Marking			1	00	A3258	XYLX		OK		10	Û	Ũ
F	Body d:a.				8	0.768	-0.729	0.72	9-0.73	73			0
Widt	h across fi	lats		32 1.250		-1.212	1.236-1.238		32		0		
Width	across co:	mars		8 1.443		-1.383	1.42	2-1.425		8		0	
	Height				8	0.483	-0.455	0.46	i3-0.47		8		0
MAJO	R DIAME	TER			8	0.7482	-0.7353	0.73	8-0.741		8		0
	Length			32 12-1		1.75	1.75 11.928-11.			32	2	0	
Th	read lengtl	h		32 1.38		REF 1.403-1.4		3-1.449		32	2	0	
(Go-Gage			1	8	UNC	C-2A	A OK			8		0
NC	D-GO gage	e			8	UNC	C-2A	(OK		8		0
CHEMICAL COM	POSITIO	N:		ACCOR	RDING	TO ASTN	И АЗ25-0	2					
TEST DATE:	2009-06-	19	SAMPLE	ED BY:N	AIXOAI	NQIN	TITLE:Q	C MANAGER	SA	MPLIN	IG DATE:	2009-06	5-19
CHEMICAL FLEMENT (%)	С	ľ	Vĺn	Р	S	Si	Cr	Mo		Ni	A1	Ti	V
LARLAVILLA I (70)	N 30-0 5			0.040	0.050	0 15 0 3							
SPECIFIED	2	0.60	MIN	MAX	MAX	0							
TEST RESULT	0.44	(1.6	D.012	0.01	0.22	0.04	0.006).08	0.027	0 002	0.001
				Lagor	DDD		x 4005 0	2					
TEST DATE	CPERTI	15) 19	SAMDI P	D BV-N		NOIN	TITI SO	C MANAGER	SAL			2000.06	28
ILDI DAIL	2009-00 CANC	20	SMINELY		ROAR	74Q114	LITTE: Q	C MANAGLIC	24		O DAIL.	2009-00	-20
TEST ITEM	SPIVI	E		SPEC	IFIED		ACI	UAL RESULT		ACCI	EPT	REJ	ECT
PROOF LOAD STRESS	1			85 1	KSI		85 KSI OK			1		0	
TENSILE													
STRENGTH(KSI)	4			120	MIN			130-135		4		<u>0</u>	
HARDNESS (HRC)	8			34 N	MAX			25-27		8		0	

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATICN PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY

SIGNATURE: MAOXIANQIN TITLE. QC MANAGER

				CERT	IFICATE	CTION							
Purchaser	PFC						Date.	2008-8-1	8				
PO.NO.	PO 1804	1739					ISO NO:	03407Q1	0012ROS				
INV NO.	98017RI	3083126B					Expire	2010-01-	10				
Manufacturer	Lin'an H	uaxing Faste	ning Fiec	e Co.,Li	d.								
Address:	Tashan V	Village, Qiano	huan Tor	wn,Lin'a	n City,Zł	ejiang Province	e, China						
Commodity	A563 GH ID&3C1	R.C. HVY HE RCUMFERE	X NUT(A	A325), JINES C	W/MFG'	S FACE PLAIN	CUSTOMER PA	ART NO.	00214-32	00-300			
Size:	3/4-10						MANUFACTUR						
Lot NO	28B1942	-3					HEAT NO.	07210497	-1				
Lot quantity		153.000	MPCS				MATERIAL	35# Medi	umn carbor	n steel			
Frush	PLN							,					
DIMENSIONAL IN	SPECTIO	DN:	ACCOR	CCORDING TO ASME B18.2.2-1987									
TEST DATE:	2008-07	-18		SAMP	LED BY	ZHUXIAOCHA	40	2008-0	7-18				
INSPECT	M	SAMPL	E SIZE	SPEC	IFICATION	ACTUAL R	ESULT	ACCI	PT	REJECT			
AFPEA		10	Q	ASME	B18.2.2-1987	OK		10	U	Ū			
Ma	rking		3 Circumferential 100 Lines & 01RC			OK		10	0	Ū			
Width a	cross flats	3	33	2	1.1	250-1.212	1.215-1.242		32		0		
Width acr	oss come	rs	8		1.4	443-1.382	1.386-1	8		Ū			
Thic	kness		8		0.1	758-0.710	0.715-0	8		0			
Mine	or dia.		8		0.0	642-0.663	0.645-0	.652	8		0		
Runout of be	aring face	FIM	8		0.1	27 MAX	0.016-0.	.018	8		0		
Go-	Gage		8		Į	JNC-2B	OK		8		0		
NO-G	O gage		8		ι	INC-2B	OK		8		0		
CHEMICAL COMP	OSITION	I:	ACCORI	DING T	O ASTN	AS63 GRAD	EC						
TEST DATE:	2008-07-	18		SAMPI	ED BY:	ZHUXIAOCHA	0	SAMPLE	NG DATE:	2008-0	7-18		
CHEMICAL ELEMENT (%)	С	Mn	P S Si Cr		Mo	Ni	Al	Ti	V				
SPECIFICATION	0.55 MAX		0.12 0.15 MAX MAX										
TEST RESULT	0.34	0.80	0.009	0.035	0.15								

MECHANICAL PROPERTIES: ACCORDING TO ASTM A563 GRADE C

TEST DATE	2008-07-18	SAMPLED BY	ZHUXIAOCHAO	SAMPLING DATE:	2008-07-18
TEST ITEM	SAMPLE SIZE	SPECIFICATION	ACTUAL RESULT	ACCEPT	REJECT
PROOF LOAD STRESS	4	144 KSI	144 KSI OK	4	D
HARDNESS	8	HRB78-HRC38	HRC28-32	8	0

THE MINIMUM TEMPERING TEMPERATURE: 800°F

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY

SIGNATURE: ZHUXIAOCHAO

Porteous Fastener Company

Product Information Sheet

Flat Washers, USS Pattern (Size W), Unhardened

- > PFC Product Category: 00370.
- > Typical Material: Low Carbon Steel (made from scrap pieces of steel)
- Material and Mechanical Properties: No requirements
- Dimensions: ANSI B18.22.1, Table 1A, Size "W"
- Other specification: ASTM F844
- > Zinc Plating: Purchased to meet ASTM F1941 FeZn3A
- ➤ Hot-Dip Galvanized: Purchased to meet ASTM A153.
- > Hardness: No hardness requirements exist in the specifications

	USS Flat Washer Dimensions									
Size	I.D.	0.D.	Thickness	Size	I.D.	O.D.	Thickness			
3/16	0.245-0.265	0.557-0.577	0.036-0.065	1 1/8	1.243-1.280	2.743-2.780	0.136-0.192			
1/4	0.307-0.327	0.727-0.749	0.051-0.080	1 1/4	1.368-1.405	2.993-3.030	0.136-0.192			
5/16	0.370-0.390	0.868-0.905	0.064-0.104	1 3/8	1.490-1.545	2.743-2.780	0.153-0.213			
3/8	0.433-0.453	0.993-1.030	0.064-0.104	1 1/2	1.615-1.670	3.240-3.295	0.153-0.213			
7/16	0.495-0.515	1.243-1.280	0.064-0.104	1 5/8	1.740-1.795	3.490-3.545	0.153-0.213			
1/2	0.557-0.577	1.368-1.405	0.086-0.132	1 3/4	1.865-1.920	3.900-4.045	0.153-0.213			
9/16	0.620-0.640	1.462-1.499	0.086-0.132	2	2.115-2.170	4.490-4.545	0.153-0.213			
5/8	0.681-0.718	1.743-1.780	0.108-0.160	2 1/4	2.365-2.420	4.740-4.795	0.193-0.248			
3/4	0.805-0.842	1.993-2.030	0.122-0.177	2 1/2	2.615-2.670	4.990-5.045	0.210-0.280			
7/8	0.931-0.968	2.243-2.280	0.136-0.192	2 3/4	2.865-2.945	5.240-5.315	0.228-0.310			
1	1.055-1.092	2.493-2.530	0.136-0.192	3	3.115-3.190	5.490-5.565	0.249-0.327			

Porteous Fastener Company

Page 1 of 1

The information presented is believed to be accurate at the time of document creation. However, Porteous Fastener Company is not responsible for any claim traceable to any errors (typographical or otherwise) as contained herein. Porteous Fastener Company makes no warranties as to the accuracy of this information.

Porteous Fastener Company

Product Information Sheet

Flat Washers, USS Pattern (Size W), Unhardened

- > PFC Product Category: 00370.
- > Typical Material: Low Carbon Steel (made from scrap pieces of steel)
- > Material and Mechanical Properties: No requirements
- Dimensions: ANSI B18.22.1, Table 1A, Size "W"
- Other specification: ASTM F844
- Zinc Plating: Purchased to meet ASTM F1941 FeZn3A
- Hot-Dip Galvanized: Purchased to meet ASTM A153.
- > Hardness: No hardness requirements exist in the specifications

	USS Flat Washer Dimensions									
Size	I.D.	O.D.	Thickness	Size	I.D.	O.D.	Thickness			
3/16	0.245-0.265	0.557-0.577	0.036-0.065	1 1/8	1.243-1.280	2.743-2.780	0.136-0.192			
1/4	0.307-0.327	0.727-0.749	0.051-0.080	1 1/4	1.368-1.405	2.993-3.030	0.136-0.192			
5/16	0.370-0.390	0.868-0.905	0.064-0.104	1 3/8	1.490-1.545	2.743-2.780	0.153-0.213			
3/8	0.433-0.453	0.993-1.030	0.064-0.104	1 1/2	1.615-1.670	3.240-3.295	0.153-0.213			
7/16	0.495-0.515	1.243-1.280	0.064-0.104	1 5/8	1.740-1.795	3.490-3.545	0.153-0.213			
1/2	0.557-0.577	1.368-1.405	0.086-0.132	1 3/4	1.865-1.920	3.900-4.045	0.153-0.213			
9/16	0.620-0.640	1.462-1.499	0.086-0.132	2	2.115-2.170	4.490-4.545	0.153-0.213			
5/8	0.681-0.718	1.743-1.780	0.108-0.160	2 1/4	2.365-2.420	4.740-4.795	0.193-0.248			
3/4	0.805-0.842	1.993-2.030	0.122-0.177	2 1/2	2.615-2.670	4.990-5.045	0.210-0.280			
7/8	0.931-0.968	2.243-2.280	0.136-0.192	2 3/4	2.865-2.945	5.240-5.315	0.228-0.310			
1	1.055-1.092	2.493-2.530	0.136-0.192	3	3.115-3.190	5.490-5.565	0.249-0.327			

Porteous Fastener Company

Page 1 of 1

The information presented is believed to be accurate at the time of document creation. However, Porteous Fastener Company is not responsible for any claim traceable to any errors (typographical or otherwise) as contained herein. Porteous Fastener Company makes no warranties as to the accuracy of this information.

HEXICO ENTERPRISE CO., LTD.

NO.355-3,SEC. 3,CHUNG SHAN ROAD,KAU-JEN,TAINAN,TAIWAN,R.O.C. TEL : 886 - 6 - 2390616 FAX : 886 - 6 - 2308947

INSPECTION CERTIFICATE

CUSTOMER	PORTEOUS FASTEN	ER CO.	
PART NAME	ASTM F436 - 07 TYP	E 1 WASHERS	
SIZE	3/4 "	DATE	November 20, 2009
PART NO	W2A6C6000S6H0	REPORT NO.	981120-01
CUST. PART NO.	00385-3200-020	SHIPPING NO.	
MATERIAL / DIA.	10B20 / 23 mm	ORDER NO.	19061512
HEAT(COIL) NO.	1Q058	LOT NO.	872C6PF22
LOT QTY	72,000 PCS	DOCUMENT NO.	9801005
STANDARD OF S	AMPLING SCHEME	ANSI / ASME B18.18.2 M	

						DIMENSION	S IN inch
	INCRECTION ITEM	S DE	~ VA	TTE	INSPECTIO	N RESULTS	DEMADEG
	INSPECTION ITEM	SPE	. VA	LUE	MIN.	MAX.	KEMAKKS
1	OUTSIDE DIAMETER	1.4360	-	1.5000	1.4516	1.4776	
2	INSIDE DIAMETER	0.8130	-	0.8450	0.8374	0.8413	
3	THICKNESS	0.1220	-	0.1770	0.1256	0.1547	
4	HARDNESS	HRC	38	- 45	38.7	42.5	
5	COATING						
6	APPEARANCE	V	'ISUA	L	C		

INSPECTED BY Ju Tain Lin

CERTIFIED BY

Jing Yeh Tsao

PDF created with pdfFactory trial version www.pdffactory.com

PDF created with pdfFactory trial version www.pdffactory.com

	PLATE M			Winton, (252) 356	279 NC 27986 -3700	. · ·		Mill	Tes	t R	еро	ort				· -		4		our N	
	Issuing Date : Vehicle No: Specification :	01/26/20 WTI 3338 0.8750" ASTM A	09 8 x 96.000 x 96.000	B/L 1 0" x 240. \STM A7	lo. : 2234 000" '09 Grade	63 36-08/ASN	Loa //E SA36-0	d No.: 2: 3ia	25050 Sold To	: NAM 500 (SUIT ROS	Our IASCO (COLONI E 500 WELL,(Order No CORPOR IAL CENT GA 30076	IO. : RATIC TIER I 6	69143/1 DN PKWY		C Ship To	Aust. Ord : NAM 4302 SHR	der No. : IASCO - S W 70TH : EVEPORT	6179649 HREVEPOR STREET I,LA 71108	Г	
	Marking :			- -	-										•						
	Heat No	C	Mn	Р	S	Si	Cu	Ni	Cr	Мо	Alz	v		Nb	Ti	N	Ca	В	Şn	CEQ	PCM
1461	9100461	0.19	0.82	0.018	3 0.007	0.17	0.33	0.09	0.09	0.04	0.005	0.00	2 (0.002	0.001		0.00	10 0.000	0 0.022	0.38	0.27
- 9100 94/4	Plate Serial No	Pieces	Tons	Dir.	(psi) Yield	(psi) Tensile	Elongatio % in 2"	n Elongati %in 8	ion 3"	Dir.	1	(%) shear	2	(%) shear	harpy 3	Impacts (%) shear	S Ave.	(%) shear	Size	Temp	Min Ave.
Heat 7768	9100461-03	7	20.01	T T	46,900 47,700	70,400 76,700	-	18.3 22.4				-									
- 4 -																					
er-Li																					
Ord		-																			
																			- ¹		
ts i																					
oqno																					
P L																					
hwa																					· · · · · · · · · · · · · · · · · · ·
Ť																					
00																					
s, Inc			·. •																		
03			actice by I	Electric A	rc Furnace	Welding or w	eld repair wa	as not perfor	med on this	material		W	We her	eby certify	that the	contents	of this rep	oort are acc	urate and corr	ect. All tea	t results

02-05-201	0 23:21 L	oad - 779623	В	L - 658	85052				B	R466
Go:don's S	pecialties, Inc. G	SI Highway Produ	ucts		Heat - A91850	01			U U	LI\400
Cust. PO -	16855 ASHLEY		Order	-Line - 4	4778880 / 2.477	78880 / 1				
	02-03-110 12:1	10 FROM-ITC		708-	-563-1950		Т-601	P014/02	4 F-915	
			* 2						11.010	
03Feb	010 8:49 Sold By:	TE	ST CE	RT	IFICA	ТЕ		No: DO	CR 65772	1 .
	INDEPENDENC 6226 W. 74T CHICAGO, IL Tel: 708-49	E TUBE CORPO H STREET 60638 6-0380 Fax:	ORATION 708-563-195	50	P/O No 624 Rel S/O NO DCI B/L NO DCI Inv No	48663 R 2025 R 1392	3-003 4-012	Shp Inv	02Feb10	
•	Sold To: NAMASCO-EAS 500 COLONIA SUITE 500 ROSWELL, GA	(144) T L PARKWAY 30076			Ship To: NAMÁSCO-SU 3775 INDUS 770-271-99 SUWANEE, ((8) UWANEE STRIAL 948 GA	COURT			
	Tel: 678-25	9-8845 Fax:	571 323-061	.3	4					
	(CERTIFICATE	of ANALYSIS	and	TESTS	c	ert. N	io: DCR	657721	-
Part	NO 003						- 1		02Feb10	
4"X	IG A500 GRADI 3" X 3/16" 2	E B(C) X 40'				•		PCS 13	Wgt 4,238	
Heat A9185	Number : 01 6	Fag No 640005 YLD=7320	0/TEN-84900	/ELG=	47.6			Pcs 13	Wgt 4,238	1 - E
Heat A9185	Number 01 (*** Che C=0.2100 Mn= Cu=0.0900	mical Analy 0.4700 P=0.	sis * 0090	** S=0.0030 S	5 i =0.03	00 Al=	0.0260		
T/R F	AX						· .			
	2	en en							2	
Test MELTE	Report Clerk D IN U.S.A.	to Adag			بر بر	n de la composition de la comp				
WE PR INDEP AND I ***** CURRE	OUDLY MANUF ENDENCE TUBE NSPECTED IN ************************************	ACTURE ALL O E PRODUCT IS ACCORDANCE	F OUR HSS II MANUFACTUR WITH ASTM S' *********	n The Ed, Ti Tandai *****	USA. ESTED, RDS. *****					
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	A500/2 A513-0 A252-1	A500M 07 98 (2)	-07					
				, _ ,	-,					-
	1								· · · · ·	

Page: 1 Last

Customer P.O. No.: 6247928 Mill Order No.: 41-262010-02 Shinning Manifest	est : HT060144	
DUNTS PAYABL Product Description: ASTM A36(08)/A709(09A)36/ASME SA36(08A) Ship Date: 05 Feb 10 Cert N PRWY AASHTO M270(01)36, 0.80-1.20 MN Ship Date: 05 Feb 10 Cert N	t No: 031102364 age 1 of 1)	ialties, Inc. 49 CASEY 39 To:MTR D
Size: 0.250 X 96.00 X 240.0 (IN)	-	GS
1 Pieces Charpy Impact Tests		
Piece Tst YS UTS %RA Elong % Tst Average Abs. Energy(FTLB) % Shear Tst Tst Tst Dimensions Loc (PSI) (PSI) Zin 8in Dir Hardness 1 2 3 Avg 1 2 3 Avg Tmp Dir	st Tst BDWIT lir Siz Tmp %Sh: (mm)	Shr Ighwa
0.250 X 96.00 (T.L.C) L 53000 64000 30 T C 54000 64000 32 T 0.250 X 96.00 (T.L.C) L 55000 63000 32 T		ay Pro
Chemical Analysis Mn P S Si Tot Al Ca Ni Cr Mo Cb V Ti B N CEV	OR	RGN
1.09 .010 .002 .24 .030 .33 .18 .09 .06 .002 .005 .025 .0001 .0083 .30	USA	A
TURE OF THIS FRODUCT N/6 + (CR+MO+V)/5 + (NI+CU)/15 TH AN ASTERISK IS FRODUCED FROM COIL NUFACTURED IN THE U.S.A.		ler-Line -
TURE OF THIS FRODUCT NN/6 + (CR+MO+V)/5 + (NI+CU)/15 TH AN ASTERISK IS PRODUCED FROM COIL NUFACTURED IN THE U.S.A. 0100 PCES: 4, WGT: 6534 * E0A106 0101 PCES: 21, WGT: 1	34304	Heat - EOA106 Ier-Line - 4776894 / 1 Aframe MFAUT02
TURE OF THIS PRODUCT NN/6 + (CR+MO+V)/5 + (NI+CU)/15 TH AN ASTERISK IS PRODUCED FROM COIL NUFACTURED IN THE U.S.A. 0100 PCES: 4, WGT: 6534 * E0A106 0101 PCES: 21, WGT: 1	34304	Heat - EOA106 Ier-Line - 4776894 / 1 Aframe MFAUT02
TURE OF THIS FRODUCT NN/6 + (CR+MO+V)/5 + (NI+CU)/15 TH AN ASTERISK IS PRODUCED FROM COIL NUFACTURED IN THE U.S.A. 0100 PCES: 4, WGT: 6534 * E0A106 0101 PCES: 21, WGT: :	34304	Heat - E0A106 Ier-Line - 4776894/1 hframe MFAUT02
TURE OF THIS PRODUCT NN/6 + (CR+M0+V)/5 + (NI+CU)/15 TH AN ASTERISK IS PRODUCED FROM COIL NUFACTURED IN THE U.S.A. 0100 PCES: 4, WGT: 6534 * E0A106 0101 PCES: 21, WGT: :	34304	Heat - EOA106 Ier-Line - 4776894 / 1 Aframe MFAUT02 Page 2

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510 CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771 We hereby certify that the test results presented here

are accurate and conform to the reported grade specification \to

Acrief J. Schoolt Daniel J. Schacht

Quality Assurance Manager

HEAT NO.:3013673 SECTION: REBAR 13MM (#4) 20'0"	s 0	CMC Constructio	n Svcs College Stati	S H	CMC Construction Svcs Colle	ge Stati	Delivery#: 80234296 BOL#: 70076586		13:30
420/60	L	10650 State Hw	y 30		10650 State Hwy 30		CUST PO#: 3389-CC		
GRADE: ASTM A615-09 Gr 420/60	D	College Station	TX P College Station TX		College Station TX	CUST P/N:			
ROLL DATE: 12/12/2009		US 77845-7950	t –		US 77845-7950		DLVRY LBS / HEAT: 2	6292.000 LB	79
MELT DATE: 12/14/2009	Т	979 774 5900		Т	979 774 5900		DLVRY PCS / HEAT: 1	968 EA	9
	0			0					14
 Characteristic	Value		Charao	teris	tic Value		Characteristic	Value	1982
C	0 42%		· · · · · ·						-
Mn	0.68%								
Р	0.015	×							
s	0.036	Yo							
Si	0.19%								
Cu	0.34%								
Cz	0.25%								
Ni	0.25%								S
Mo	0.086	%	-						山
v	0.001	%							L۳.
Сь	0.001	%							72
Sn	0.015	ж							
AI	0.002	%							
		~							
Yield Strength test 1	69.1ks	i							
Tensile Strength test 1	105.7	si							
Elongation test 1	14%								
Elongation Gage Lgth test 1	8IN								
Bend Test Diameter	1.750	N				1			
Bend Test	Passed	1							
F						1			F

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. REMARKS :

> 12/16/2009 07:23:00 Page 1 OF 1

PAGE 02/02

01/27/2010

	CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510			CERTIFIED MILL T For additional a	EST	N REPORT are accu es call	Ne hereby certify that the test results presented here surate and conform to the reported grade specification Genuity A. Achaetet			
CMC1 S	SEGUIN T	X 7815	5-7510	830-372-	877	1		Daniel J. Schacht		27/
							۵	uality Assurance Manager		<u>Р</u> 197
HEAT NO.:3012466 SECTION: REBAR 16MM (# 420/60 GRADE: ASTM A615-08b BOLL DATE: 10/09/2009 MELT DATE: 10/09/2009	#5) 20'0" Gr 420/6	S U U U U U U U U U U U U U	CMC Construction 10650 State Hw College Station US 77845-7950 979 774 5900	on Sves College Stati y 30 TX }	S H I P T O	CMC Construction Svcs Colleg 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	ge Stati	Delivery#: 80227878 BOL#: 70073867 CUST PO#: 436501 CUST P/N: DLVRY LBS / HEAT: 2 DLVRY PCS / HEAT:	9 2190.000 LB 105 EA	13:30 97977459
Charact	teristic	Value		Charac	teris	tic Value		Characteristic	Value	102
	С	0.40%							,	
	Min	0.86%								
	P	0.015	%							
	5	0.024	70							
	31	0.19%								1
	CU Cu	0,20%					-			
	Ni	0.20%								0
	Mo.	0.21/0	*							干
	V	0.0029	×.							P
	Cb	0.002	×0							拔
	Sn	0.012	20							ľ
	Al	0.0029	%							
Yield Strength	a test 1	74.9ks	i							
Tensile Strength	n test 1	110.8	si							
Elongation	n test 1	14%								
Elongation Gage Lgth	i test 1	8IN								
Bend Test Di	ameter	2.188	N							
Ber	nd Test	Passed								

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA. WITH NO WELD REPAIR OF MERCURY CONTAMINATION IN THE PROCESS. REMARKS :

PAGE

01/02

Trinity Highway Products , LLC 2548 N.E. 28th St. Ft Worth, TX

Customer: SAMPLES, TESTING MATERIALS 2525 STEMMONS FRWY Sales Order: 1072852 Customer PO: BOL # 29710 Document # 1 HUBINARY Products

Print Date: 1/22/10 Project: SAMPLES-TESTING THIS ORDER FOR END TERMI Shipped To: TX Use State: TX

DALLAS, TX 75207

Trinity Highway Products, LLC

Certificate Of Compliance For Trinity Industries, Inc. ** E.T. PLUS EXTRUDER TERMINAL **

NCHRP Report 350 Compliant

Diacas	Description	
3	12/12/6/6/3 /8	
5	12/12/6/3/S ET2000 ANC	
6	12/25/84/8	
6	60 POST/DB·DDR	
5	CABLE ANCHOR BRKT ET-2000	
1	ET-PLUS EXTRIDER HEAD	
5	CBL 3/4X6/6/DBL SWG/NOHWD	
7	5/8" RD WASHER 1 3/4 OD	
110	5/8" GR HEX NUT	
100	5/8"X1.25" GR BOLT	
6	5/8"X10" GR BOLT A307	
2	3/4" ROUND WASHER F436	
2	3/4" HVY HEX NUT A563 DH	
2	3/4"X2.5" HEX BOLT A325	
10	1" ROUND WASHER F844	
10	1" HEX NUT A563	
6	WD BLK RTD 6X8X14	
4	3/8" ROUND WASHER F436	
2	3/8" FENDER WASHER F844	
2	3/8" LOCK WASHER	
2	3/8"X1.5" HEX BOLT GR-5	
2	7/16" WASHER F844	
2	7/16"X1.5" HEX BOLT GRD 5	
2	7/16" LOCK WASHER	
2	7/16" HEX NUT A563 DH	
2	3/4" LOCK WASHER	
1	REFL SHT 13X27.5 Y/B LT	
2	3/8"X2" HEX BOLT GR-5 HDG	
4	3/8" HVY HEX NUT A563GRDH	
1	6'0 PST/8.5#/SYTP	
1	HBA-BRG PL/WELDED TABS	

1 of 2
Trinity Highway Products , LLC 2548 N.E. 28th St. Ft Worth, TX

Customer: SAMPLES, TESTING MATERIALS 2525 STEMMONS FRWY Sales Order: 1072852 Customer PO: BOL # 29710 Document # 1 Print Date: 1/22/10 Project: SAMPLES-TESTING THIS ORDER FOR END TERMI Shipped To: TX Use State: TX

DALLAS, TX 75207

Trinity Highway Products. LLC

Certificate Of Compliance For Trinity Industries, Inc. ** E.T. PLUS EXTRUDER TERMINAL **

NCHRP Report 350 Compliant

Pieces	Description	
1	SYT-3"AN STRT 3-HL 6'6	
1	ET HBA P1 TOP X 2-8 3/4	
1	ET HBA P1-2 BTM X 6-1 1/2	

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.

TL -3 or TL-4 COMPLIANT when installed according to manufactures specifications

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

ALL OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123.

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH - 49100 LB

State of Texas, County of Tarrant. Sworn and Subscribed before me this 22nd day of January, 2010

Notary Public: Commission Expires:

Trinity Highway Prod Certified By: Quality Assurant

2 of 2

Date:	2010-04-23	в т	est No.:	420020-1	а	VIN No.:	1D7HA1	8NV3J505	635
Year	2003		Make.	Dodge		Model:	Ram 15(20	
	2003		make.	Douge					
Lire Siz	ze: 245/	(0R17			l ire li	nflation Pre	ssure: <u>3</u>	o psi	<u> </u>
Tread 7	Type: <u>High</u>	way				Odo	meter: <u>12</u>	29186	
Note ar	ny damage to	the vehicle	prior to t	test:					
Deno	otes acceleror	meter locati	on.			- W	_ X		
NOTES	2.		-						
NOTES	D			-					
Engine		8		- M WHEEL A			•		TRACK
Engine	CID: 4.	7 liter							
Transm	nission Type:			1					
x	Auto or	M	anual						ST INERTIAL C.M.
	FWD <u>x</u>	RWD	4WD	P				P	
Optiona	al Equipment:			_		\sim			
				-					
Dummy	Dummy Data:						G		
Mass:		Juuniny		- <u>+ + +</u>	$- \mathbf{Y}$			$\frac{3}{1}$	
Seat F	Position:			-	M _{fr}	ont H ·	-	۱ ب	M _{rear}
Geome	etry: inches	6			╼╴┌╶╼ ╎╸ ╸		- C —		— U —-
A	77.00	F;	39.00	К	20.50	P	3.00	U	27.50
В	73.85	G	28.00	L	28.75	Q	29.50	V	33.00
С	227.00	Н _ 6	53.10	M	68.25	R	18.50	W	59.50
D	47.50	<u>ر</u> ا	13.50	<u> </u>	67.25	S	14.25	X	140.50
E	140.50	J	26.0	<u> </u>	44.75	6 1 25	75.50		16 625
Wheel Co	enter Ht Front	14.12	5 W	heel Well Clea	arance (FR)	11 250	Frame	Ht (FR)	24 250
RANG	E LIMIT: A=78 :	±2 inches; C=	237 ±13 inc	ches; E=148	±12 inches; F:	=39 ±3 inches	; G = > 28 in	ches; H = 63	±4 inches;
			O=43	3 ±4 inches; I	+N/2=67 ±1.5 حــ	5 inches		Crass	
GVWR R	Ratings:	Mass: It	C	Curb	Iner	tial		<u>Gross</u> Static	
Front	3650	M _{front}		2775		2767 Allow	able		Allowable
Back	3900	M _{rear}		1967		2256 Rang	e _		Range
Total	6650	M_{Total}		4742		5023 5000	±110 lb		5000 ±110 lb
Mass D	Distribution:								
lb		LF:	1425	RF:	1342	LR:	1118	RR:	1138

Figure C1. Vehicle Properties for Test No. 420020-1a.

Table C1. Vehicle Center-of-Gravity Measurements for Test No. 420020-1a.

Date: 2010-04	<u>-22</u> Te	st No.: 42	20020-1a	\	/IN: <u>1D7</u>	HA18N∖	/3J505(635	
Year: 2003 Make: Dodge Model: Ram 1500									
Body Style: Quad Cab Mileage: 129186									
Engine: 4.7 liter Transmission: Automatic									
Fuel Level: Er	mpty	Balla	st: <u>235</u>	b at fron	t of bed			(440 lb	max)
Tire Pressure: I	Front: 3	5 psi	Rear:	: <u>35</u> p	osi Siz	e: 245	/70R17	7	
Measured Vel	hicle Wei	ghts: (I	b)						
I F·	1300		DE-	1373		Fron	t Avla:	2763	
LI .	1550			1575				2705	
LR:	1114		RR:	1135		Rea	r Axle:	2249	
Left:	2504		Right:	2508			Total:	5012	
							5000 ±11	0 lb allow ed	
W/b	ool Baso	140 5	inches	Track: F:	68 25	inches	R٠	67 25	inches
140.3 148 ±12 inches allow ed				Track = $(F+R)/2 = 67 \pm 1.5$ inches allow ed			morioo		
Center of Gra	vity , SAE	J874 Sus	spension N	/lethod					
X:	63.05	in	Rear of F	ront Axle	(63 ±4 inches	s allow ed))		
	0.02	in	1	Diabti	of) (abiala	Cantar	ulia a		
Y:	0.03	In	Leit -	Right +	or venicle	Center	line		
Z:	28.00	in	Above Gr	ound	(minumum 28	.0 inches	allow ed)		
Hood Heigh	t:	44.75	inches	Front B	umper Heig	ght:	:	<u>26.00</u> inc	hes
	43 ±4 inc	hes allowed							
Front Overhang	g:	39.00	inches	Rear B	Rear Bumper Height: 28.75			28.75 inc	hes
	39 ±3 inc	hes allowed							
Overall Length	า:	227.00	inches						
-	237 ±13	inches allowed	Ł						

Date: 2010-04-23 Test No.: 420020-1a VIN No.: 1D7HA18NV3J505635 Year: 2003 Make: Dodge Model: Ram 1500

Table C2. Exterior Crush Measurements for Test No. 420020-1a.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable						
End Damage	Side Damage					
Undeformed end width	Bowing: B1 X1					
Corner shift: A1	B2 X2					
A2						
End shift at frame (CDC)	Bowing constant					
(check one)	$\underline{X1 + X2}$					
< 4 inches	2 =					
\geq 4 inches						

Note: Measure C_1 to C_6 from driver to passenger side in front or rear impacts – rear to front in side impacts.

		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C ₃	C_4	C ₅	C ₆	±D
1	Front plane at bumper ht	12	10	24	1	3	5.5	6	7	10	+12
2	Side plane above bumper ht	12	12	56	2	3.5	6	8	9.5	12	+74

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2010-04-23	Test No.:	420020-1a	VIN No.:	1D7HA18NV3J505635
Year:	2003	Make:	Dodge	Model:	Ram 1500

Table C3. Occupant Compartment Measurements for Test No. 420020-1a.

B2,5 B1,4 | B3,6 E1-4

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After
۸1	(Incrites)	(Inches)
	04.50	04.30
A2	64.50	64.25
A3	65.00	64.50
B1	45.50	45.50
B2	39.38	39.38
B3	45.25	46.00
B4	42.25	42.25
B5	42.62	42.62
B6	42.25	42.25
C1	28.50	28.50
C2		
C3	27.00	25.50
D1	12.75	12.75
D2	2.50	2.50
D3	11.75	12.25
E1	62.62	63.00
E2	64.50	64.75
E3	64.00	64.00
E4	64.00	64.00
F	60.00	60.00
G	60.00	60.00
н	39.50	39.50
I	39.50	39.50
J*	62.25	61.00

APPENDIX D. SEQUENTIAL PHOTOGRAPHS

0.071 s

0.139 s

Figure D1. Sequential Photographs for Test No. 420020-1a (Overhead and Frontal Views).

0.210 s

Figure D1. Sequential Photographs for Test No. 420020-1a (Overhead and Frontal Views) (Continued).

0.000 s

0.071 s

0.139 s

0.278 s

0.349 s

0.210 s 0.488 s Figure D2. Sequential Photographs for Test No. 420020-1a (Rear View).

Roll, Pitch, and Yaw Angles

Figure E1. Vehicle Angular Displacements for Test No. 420020-1a.

Figure E2. Vehicle Longitudinal Accelerometer Trace for Test No. 420020-1a (Accelerometer Located at Center of Gravity).

Figure E3. Vehicle Lateral Accelerometer Trace for Test No. 420020-1a (Accelerometer Located at Center of Gravity).

Figure E4. Vehicle Vertical Accelerometer Trace for Test No. 420020-1a (Accelerometer Located at Center of Gravity).

Figure E5. Vehicle Longitudinal Accelerometer Trace for Test No. 420020-1a (Accelerometer Located over Rear Axle).

Y Acceleration over Rear Axle

Figure E6. Vehicle Lateral Accelerometer Trace for Test No. 420020-1a (Accelerometer Located over Rear Axle).

Figure E7. Vehicle Vertical Accelerometer Trace for Test No. 420020-1a (Accelerometer Located over Rear Axle).